Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Oxy-Combustion

Forcing of zero emissions piston engine by oxygen enrichment in membrane reactor (Hi-Ox ZEMPES project)

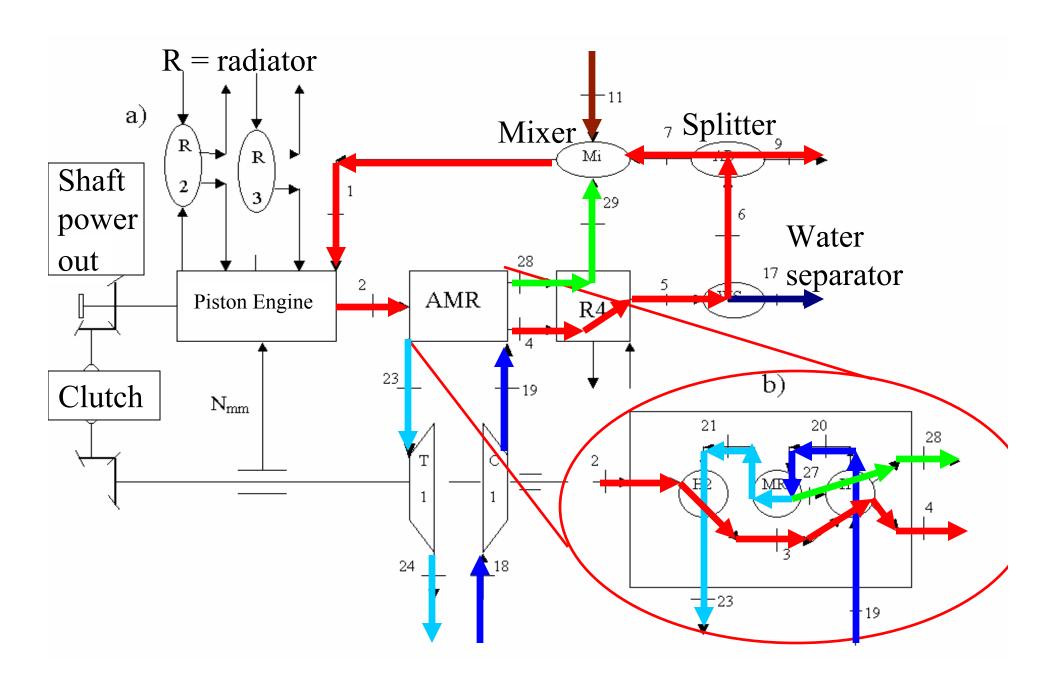
Mikola Shokotov, Evgeni Yantovski and Kirsten Foy

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

ZEMPES – an Oxycombustion vehicle

- Zero Emissions Membrane Piston Engine System
 - OTM separates oxygen from air
 - Oxygen mixed with CO₂
 - Fuel burned with this mixture in piston engine
 - Exhaust contains only CO₂ and H₂O
 - Cooled → water removed
 - CO₂ compressed and stored onboard
 - Eject CO₂ at fuel filling station

Oxygen Ion Transport Membranes (OTMs)


Solid membranes made of special ceramics

• Ceramic lattice contains oxygen ion vacancies

- Above ~ 700°C oxygen ions can travel through
 - Acts like a sieve for oxygen
 - If incorporated into cycle: uses very little energy

ZEMPES layout

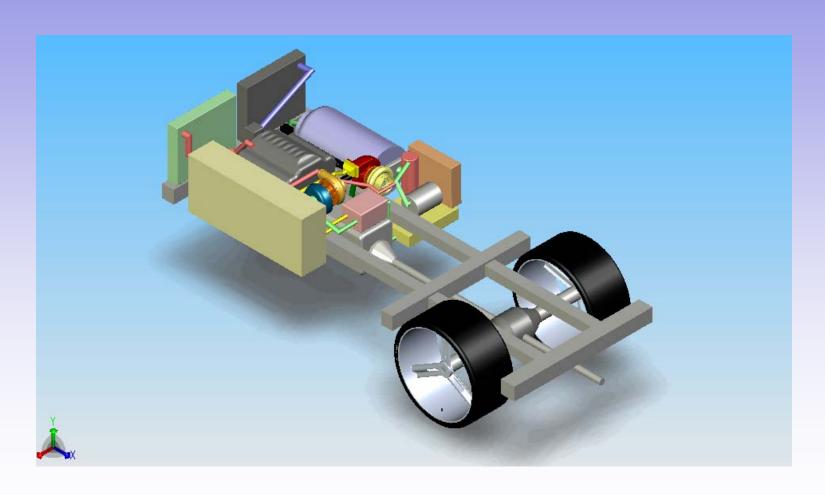
- Air
 - Compressed and Heated
 - Some oxygen removed
 - Expanded and Exhausted
- Piston engine exhaust
 - Cooled water removed
 - Some CO₂ recirculated to piston engine
 - Some CO₂ stored for sequestration

ZEMPES

- Proportion of oxygen in mixer can be altered
- Previous papers assume oxygen fraction = 0.21
 - Efficiency = 34%
 - Base case

- Hi-Ox ZEMPES increase oxygen fraction
 - Does not require any change in layout

Hi-Ox ZEMPES


- Smaller engine required
 - at 0.209, 6 cylinders needed
 - at 0.4, only 3 cylinders for same power

Oxygen fraction	0.209	0.3	0.4	0.5
in mixture				
Efficiency	34%	38%	39%	40%
Temperature of	830	1072	1319	1575
exhaust [K]				

Further improvement

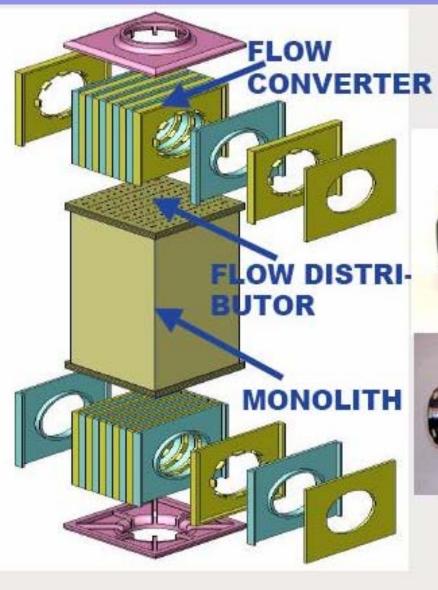
- Efficiency increases with oxygen content
- Heat is lost at very high temperatures
 - Good quality heat
 - Use heat to further increase efficiency
- Previous work
 - Supercharging turbine
 - Bottoming Rankine cycle
 - Complicate system

ZEMPES with supercharger

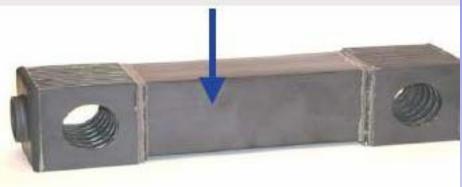
Thermochemical Recuperation

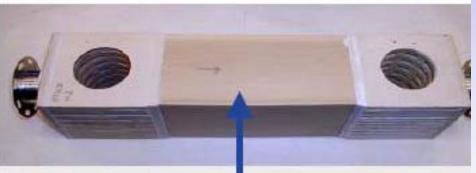
- TCR
- Physically simpler like a heat exchanger
- No moving parts
- Uses heat of exhaust to convert fuel and water to syngas
- Endothermic reaction
 - Adds energy to fuel before it enters engine
 - Increases efficiency

Hi-Ox ZEMPES with TCR


Oxygen fraction	0.209	0.3	0.4	0.5
in mixture				
Efficiency	34%	42%	42%	43%
Temperature of	816	970	1149	1295
exhaust [K]				

Hi-Ox ZEMPES with TCR and increased pressure ratio in turbocompressor


Oxygen fraction	0.3	0.4	0.5
in mixture			
Pressure ratio	3	5	9
Efficiency	42%	44%	47%


Emissions? Zero emissions

- None of the products of combustion are released to atmosphere
- Any impurities in fuel become impurities in sequestered carbon dioxide
- Hot air with some oxygen removed is only "emission"
- Air not heated to NO_x forming temperature
- There are no emissions

ASSEMBLED CERAMIC MEMBRANE MODULE FABRICATED BY HYDRO

ASSEMBLED CERAMIC HEX MODULE FABRICATED BY HYDRO

ZEMPES prototype

- Vehicle manufacturers concentrate on fuel cell and hydrogen vehicles billions spent
- ZEMPES theoretically 47% efficiency
- Components required are available

• It is time for a ZEMPES prototype